Loading [MathJax]/extensions/MathZoom.js
5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning | IEEE Conference Publication | IEEE Xplore

5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning


Abstract:

The increasing complexity of configuring cellular networks suggests that machine learning (ML) can effectively improve 5G technologies. Deep learning has proven successfu...Show More

Abstract:

The increasing complexity of configuring cellular networks suggests that machine learning (ML) can effectively improve 5G technologies. Deep learning has proven successful in ML tasks such as speech processing and computational vision, with a performance that scales with the amount of available data. The lack of large datasets inhibits the flourish of deep learning applications in wireless communications. This paper presents a methodology that combines a vehicle traffic simulator with a ray-tracing simulator, to generate channel realizations representing 5G scenarios with mobility of both transceivers and objects. The paper then describes a specific dataset for investigating beam-selection techniques on vehicle-to-infrastructure using millimeter waves. Experiments using deep learning in classification, regression and reinforcement learning problems illustrate the use of datasets generated with the proposed methodology.
Date of Conference: 11-16 February 2018
Date Added to IEEE Xplore: 25 October 2018
ISBN Information:
Conference Location: San Diego, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.