Abstract:
Describes a way of designing a hybrid decision support system in soft computing paradigm for detecting the different stages of cervical cancer. Hybridization includes the...Show MoreMetadata
Abstract:
Describes a way of designing a hybrid decision support system in soft computing paradigm for detecting the different stages of cervical cancer. Hybridization includes the evolution of knowledge-based subnetwork modules with genetic algorithms (CIAs) using rough set theory and the Interactive Dichotomizer 3 (ID3) algorithm. Crude subnetworks obtained via rough set theory and the ID3 algorithm are evolved using CAs. The evolution uses a restricted mutation operator which utilizes the knowledge of the modular structure, already generated, for faster convergence. The CA tunes the network weights and structure simultaneously. The aforesaid integration enhances the performance in terms of classification score, network size and training time, as compared to the conventional multilayer perceptron. This methodology also helps in imposing a structure on the weights, which results in a network more suitable for extraction of logical rules and human interpretation of the inferencing procedure.
Published in: IEEE Transactions on Biomedical Engineering ( Volume: 47, Issue: 7, July 2000)
DOI: 10.1109/10.846688
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Cervical Cancer ,
- Stages Of Cervical Cancer ,
- Soft Computing ,
- Neural Network ,
- Machine Learning ,
- Connective ,
- Artificial Neural Network ,
- Cognitive Domains ,
- Gynecology And Obstetrics ,
- Multilayer Perceptron ,
- Decision Support System ,
- Fuzzy Set ,
- Pattern Classification ,
- Learning Rule ,
- Inference Rules ,
- Fuzzy Set Theory ,
- Network Modularity ,
- International Federation Of Gynecology ,
- Healthcare Domain ,
- Ambiguous Information ,
- Hidden Nodes ,
- Individual Modules ,
- Decision Table ,
- Genetic Operators ,
- Information Gain ,
- Decision Tree ,
- Leaf Node ,
- Mutation Probability ,
- Output Node
- MeSH Terms
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Cervical Cancer ,
- Stages Of Cervical Cancer ,
- Soft Computing ,
- Neural Network ,
- Machine Learning ,
- Connective ,
- Artificial Neural Network ,
- Cognitive Domains ,
- Gynecology And Obstetrics ,
- Multilayer Perceptron ,
- Decision Support System ,
- Fuzzy Set ,
- Pattern Classification ,
- Learning Rule ,
- Inference Rules ,
- Fuzzy Set Theory ,
- Network Modularity ,
- International Federation Of Gynecology ,
- Healthcare Domain ,
- Ambiguous Information ,
- Hidden Nodes ,
- Individual Modules ,
- Decision Table ,
- Genetic Operators ,
- Information Gain ,
- Decision Tree ,
- Leaf Node ,
- Mutation Probability ,
- Output Node
- MeSH Terms