Battery energy storage cost and capacity optimization for university research center | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Monday, 30 June, IEEE Xplore will undergo scheduled maintenance from 1:00-2:00 PM ET (1800-1900 UTC).
On Tuesday, 1 July, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC).
During these times, there may be intermittent impact on performance. We apologize for any inconvenience.

Battery energy storage cost and capacity optimization for university research center


Abstract:

Microgrids (MGs) are the essential part of the modern power grids defined as the building blocks of smart grids. Renewable Energy Sources (RESs) and Battery Energy Storag...Show More

Abstract:

Microgrids (MGs) are the essential part of the modern power grids defined as the building blocks of smart grids. Renewable Energy Sources (RESs) and Battery Energy Storage Systems (BESSs) combined with Distributed Generators (DGs) form a comprehensive MG, which require the control and Energy Management System (EMS) to fulfill the load and grid requirements. As the need for BESS grows due to uncertainties of RESs, scheduling and cost management of BESSs in the MG becomes more of a concern. In this paper, BESSs have been designed for a university research center to simultaneously overcome the outage problem and shave the peak demand considering the BESS sizing and degradation; MG cost minimization, as well as MG scheduling. PV and wind are the RESs employed in this study and in combination; Li-Ion BESS has been utilized to investigate the MG performance. A two-layer optimization algorithm has been presented to optimally define the BESS size and minimize the operational cost of the MG achieving the peak shaving and valley filling objectives. The results prove the functionality and applicability of the proposed system to be implemented as a part of the experimental MG at Griffith University in order to enhance the stability and reliability of the research center and at the same time minimize the operational costs of the MG.
Date of Conference: 07-10 May 2018
Date Added to IEEE Xplore: 31 May 2018
ISBN Information:
Electronic ISSN: 2158-4907
Conference Location: Niagara Falls, ON, Canada

Contact IEEE to Subscribe

References

References is not available for this document.