Abstract:
Image registration is the process of matching, aligning and overlaying two or more images of a scene, which are captured from different viewpoints. It is extensively used...Show MoreMetadata
Abstract:
Image registration is the process of matching, aligning and overlaying two or more images of a scene, which are captured from different viewpoints. It is extensively used in numerous vision based applications. Image registration has five main stages: Feature Detection and Description; Feature Matching; Outlier Rejection; Derivation of Transformation Function; and Image Reconstruction. Timing and accuracy of feature-based Image Registration mainly depend on computational efficiency and robustness of the selected feature-detector-descriptor, respectively. Therefore, choice of feature-detector-descriptor is a critical decision in feature-matching applications. This article presents a comprehensive comparison of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK algorithms. It also elucidates a critical dilemma: Which algorithm is more invariant to scale, rotation and viewpoint changes? To investigate this problem, image matching has been performed with these features to match the scaled versions (5% to 500%), rotated versions (0° to 360°), and perspective-transformed versions of standard images with the original ones. Experiments have been conducted on diverse images taken from benchmark datasets: University of OXFORD, MATLAB, VLFeat, and OpenCV. Nearest-Neighbor-Distance-Ratio has been used as the feature-matching strategy while RANSAC has been applied for rejecting outliers and fitting the transformation models. Results are presented in terms of quantitative comparison, feature-detection-description time, feature-matching time, time of outlier-rejection and model fitting, repeatability, and error in recovered results as compared to the ground-truths. SIFT and BRISK are found to be the most accurate algorithms while ORB and BRISK are most efficient. The article comprises rich information that will be very useful for making important decisions in vision based applications and main aim of this work is to set a benchmark for researchers, regardless of any particular area.
Published in: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)
Date of Conference: 03-04 March 2018
Date Added to IEEE Xplore: 26 April 2018
ISBN Information: