Loading [MathJax]/extensions/MathMenu.js
Engineering inertial and primary-frequency response for distributed energy resources | IEEE Conference Publication | IEEE Xplore

Engineering inertial and primary-frequency response for distributed energy resources


Abstract:

We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network compos...Show More

Abstract:

We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higherorder dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain response characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.
Date of Conference: 12-15 December 2017
Date Added to IEEE Xplore: 22 January 2018
ISBN Information:
Conference Location: Melbourne, VIC, Australia

Contact IEEE to Subscribe

References

References is not available for this document.