Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation | IEEE Conference Publication | IEEE Xplore

Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation


Abstract:

We present a learning-based mapless motion planner by taking the sparse 10-dimensional range findings and the target position with respect to the mobile robot coordinate ...Show More

Abstract:

We present a learning-based mapless motion planner by taking the sparse 10-dimensional range findings and the target position with respect to the mobile robot coordinate frame as input and the continuous steering commands as output. Traditional motion planners for mobile ground robots with a laser range sensor mostly depend on the obstacle map of the navigation environment where both the highly precise laser sensor and the obstacle map building work of the environment are indispensable. We show that, through an asynchronous deep reinforcement learning method, a mapless motion planner can be trained end-to-end without any manually designed features and prior demonstrations. The trained planner can be directly applied in unseen virtual and real environments. The experiments show that the proposed mapless motion planner can navigate the nonholonomic mobile robot to the desired targets without colliding with any obstacles.
Date of Conference: 24-28 September 2017
Date Added to IEEE Xplore: 14 December 2017
ISBN Information:
Electronic ISSN: 2153-0866
Conference Location: Vancouver, BC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.