Improving optical character recognition performance for low quality images | IEEE Conference Publication | IEEE Xplore

Improving optical character recognition performance for low quality images


Abstract:

Efficient Optical Character Recognition (OCR) in images grabbed from Set-Top Boxes (STBs) plays an important role in STB testing. However, running OCR software on such im...Show More

Abstract:

Efficient Optical Character Recognition (OCR) in images grabbed from Set-Top Boxes (STBs) plays an important role in STB testing. However, running OCR software on such images usually ends with low OCR performance since images can have low resolution, low image quality or colorful background. In order to improve OCR performance, four different image preprocessing methods are proposed. In this paper OCR is performed with Tesseract 3.5 and the relatively new Tesseract 4.0 on the images grabbed from different STBs. On the original images Tesseract 3.5 provides a 35.7% accuracy while Tesseract 4.0 attains a 70.2% accuracy. The proposed preprocessing methods improve OCR performance by 33.3% for Tesseract 3.5 and 22.6% for Tesseract 4.0 on the available images.
Date of Conference: 18-20 September 2017
Date Added to IEEE Xplore: 30 November 2017
ISBN Information:
Conference Location: Zadar, Croatia

Contact IEEE to Subscribe

References

References is not available for this document.