Abstract:
This paper presents PURE (PUblic REquirements dataset), a dataset of 79 publicly available natural language requirements documents collected from the Web. The dataset inc...Show MoreMetadata
Abstract:
This paper presents PURE (PUblic REquirements dataset), a dataset of 79 publicly available natural language requirements documents collected from the Web. The dataset includes 34,268 sentences and can be used for natural language processing tasks that are typical in requirements engineering, such as model synthesis, abstraction identification and document structure assessment. It can be further annotated to work as a benchmark for other tasks, such as ambiguity detection, requirements categorisation and identification of equivalent re-quirements. In the paper, we present the dataset and we compare its language with generic English texts, showing the peculiarities of the requirements jargon, made of a restricted vocabulary of domain-specific acronyms and words, and long sentences. We also present the common XML format to which we have manually ported a subset of the documents, with the goal of facilitating replication of NLP experiments.
Date of Conference: 04-08 September 2017
Date Added to IEEE Xplore: 25 September 2017
ISBN Information:
Electronic ISSN: 2332-6441