Loading [a11y]/accessibility-menu.js
Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis | IEEE Conference Publication | IEEE Xplore

Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis


Abstract:

Cardiac death risk is still a big problem by an important part of the population, especially in elderly patients. In this study, we propose to characterize and analyze th...Show More

Abstract:

Cardiac death risk is still a big problem by an important part of the population, especially in elderly patients. In this study, we propose to characterize and analyze the cardiovascular and cardiorespiratory systems using the Poincaré plot. A total of 46 cardiomyopathy patients and 36 healthy subjets were analyzed. Left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF > 35%, 16 patients), and high risk (HR: LVEF ≤ 35%, 30 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, blood pressure and respiratory flow signals, respectively. Parameters that describe the scatterplott of Poincaré method, related to short- and long-term variabilities, acceleration and deceleration of the dynamic system, and the complex correlation index were extracted. The linear discriminant analysis (LDA) and the support vector machines (SVM) classification methods were used to analyze the results of the extracted parameters. The results showed that cardiac parameters were the best to discriminate between HR and LR groups, especially the complex correlation index (p = 0.009). Analising the interaction, the best result was obtained with the relation between the difference of the standard deviation of the cardiac and respiratory system (p = 0.003). When comparing HR vs LR groups, the best classification was obtained applying SVM method, using an ANOVA kernel, with an accuracy of 98.12%. An accuracy of 97.01% was obtained by comparing patients versus healthy, with a SVM classifier and Laplacian kernel. The morphology of Poincaré plot introduces parameters that allow the characterization of the cardiorespiratory system dynamics.
Date of Conference: 11-15 July 2017
Date Added to IEEE Xplore: 14 September 2017
ISBN Information:

ISSN Information:

PubMed ID: 29060122
Conference Location: Jeju, Korea (South)

References

References is not available for this document.