Abstract:
Heart transplantations have made it possible to extend the median survival time to 12 years for patients with end-stage heart diseases. This operation is unfortunately li...Show MoreMetadata
Abstract:
Heart transplantations have made it possible to extend the median survival time to 12 years for patients with end-stage heart diseases. This operation is unfortunately limited by the availability of donor organs and patients have to wait on average about 200 days in a waiting list before being operated. This waiting time varies considerably across the patients. In this paper, we studied the outcome for patients entering a transplantation waiting list using deep learning techniques. We implemented a model in the form of two-layer neural networks and we predicted the outcome as still waiting, transplanted or dead in the waiting list, at three different time points: 180 days, 365 days, and 730 days. As data source, we used the United Network for Organ Sharing (UNOS) registry, where we extracted adult patients (>17 years) from January 2000 to December 2011. We trained our model using the Keras framework, and we report F1 macro scores of respectively 0.674, 0.680, and 0.680 compared to a baseline of 0.271. We also applied a backward elimination procedure, using our neural network, to extract the 10 most significant parameters predicting the patient status for the three different time points.
Published in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 11-15 July 2017
Date Added to IEEE Xplore: 14 September 2017
ISBN Information:
ISSN Information:
PubMed ID: 29059814