Abstract:
The objective of this work is first to present the kinematics modelling of an aerobridge for the application of automated aerobridge docking process to the aircraft, whic...Show MoreMetadata
Abstract:
The objective of this work is first to present the kinematics modelling of an aerobridge for the application of automated aerobridge docking process to the aircraft, which will solve the manpower shortage issues as well as prevent the damage to aircraft due to human error in manual operation. As the aerobridge is a complex system which involves five active DOFs and four free DOFs, we have proposed an alternative solution of kinematics modelling for this higher order systems. And then the numerical solutions for the inverse kinematics equations are obtained using MATLAB and the kinematic modelling of the aerobridge is validated successfully through the motion simulation using ADAMS. The control schemes of the aerobridge docking process are proposed based on (1) Home position to Pre-set position, and (2) Pre-set position to Target position, which are developed in MATLAB/Simulink. Co-simulation model is established based on ADAMS/Control and MATLAB/Simulink, which is used for modelling & design of the control systems, and also for visualizing and validating the aerobridge docking process.
Date of Conference: 24-26 April 2017
Date Added to IEEE Xplore: 08 June 2017
ISBN Information: