Abstract:
Security is one of the biggest challenges facing organisations in the modern hyper-connected world. A number of theoretical security models are available that provide bes...Show MoreMetadata
Abstract:
Security is one of the biggest challenges facing organisations in the modern hyper-connected world. A number of theoretical security models are available that provide best practice security guidelines and are widely utilised as a basis to identify and operationalise security requirements. Such models often capture high-level security concepts (e.g., whitelisting, secure configurations, wireless access control, data recovery, etc.), strategies for operationalising such concepts through specific security controls, and relationships between the various concepts and controls. The threat landscape, however, evolves leading to new tacit knowledge that is embedded in or across a variety of security incidents. These unknown knowns alter, or at least demand reconsideration of the theoretical security models underpinning security requirements. In this paper, we present an approach to discover such unknown knowns through multi-incident analysis. The approach is based on a novel combination of grounded theory and incident fault trees. We demonstrate the effectiveness of the approach through its application to identify revisions to a theoretical security model widely used in industry.
Date of Conference: 14-22 May 2016
Date Added to IEEE Xplore: 03 April 2017
ISBN Information:
Electronic ISSN: 1558-1225