Loading [MathJax]/extensions/MathMenu.js
Deep learning-based automated modulation classification for cognitive radio | IEEE Conference Publication | IEEE Xplore

Deep learning-based automated modulation classification for cognitive radio


Abstract:

Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). In our paper, we propose a deep learning-based AMC meth...Show More

Abstract:

Automated Modulation Classification (AMC) has been applied in various emerging areas such as cognitive radio (CR). In our paper, we propose a deep learning-based AMC method that employs Spectral Correlation Function (SCF). In our proposed method, one deep learning technology, Deep Belief Network (DBN), is applied for pattern recognition and classification. By using noise-resilient SCF signatures and DBN that is effective in learning complex patterns, we achieve high accuracy in modulation detection and classification even in the presence of environment noise. Our simulation results illustrate the efficiency of our proposed method in classifying 4FSK, 16QAM, BPSK, QPSK, and OFDM modulation techniques in various environments.
Date of Conference: 14-16 December 2016
Date Added to IEEE Xplore: 26 January 2017
ISBN Information:
Conference Location: Shenzhen, China

Contact IEEE to Subscribe

References

References is not available for this document.