Abstract:
We present FAST-Hex, a novel UAV concept which is able to smoothly change its configuration from underactuated to fully actuated by using only one additional motor that t...Show MoreMetadata
Abstract:
We present FAST-Hex, a novel UAV concept which is able to smoothly change its configuration from underactuated to fully actuated by using only one additional motor that tilts all propellers at the same time. FAST-Hex can adapt to the task at hand by finely tuning its configuration from the efficient (but underactuated) flight (typical of coplanar multi-rotor platforms) to the full-pose-tracking (but less efficient) flight, which is attainable by non-coplanar multi-rotors. We also introduce a novel full-pose geometric controller for generic multi-rotors (not only the FAST-Hex) that outperforms classical inverse dynamics approaches. The controller receives as input any reference pose in ℝ3×SO(3) (3D position + 3D orientation). Exact tracking is achieved if the reference pose is feasible with respect to the propeller spinning rate saturations. In case of unfeasibility a new feasible desired trajectory is generated online giving priority to the positional part. The new controller is tested with the FAST-Hex but can be used for many other multi-rotor platforms: underactuated, slightly fully-actuated and completely fully-actuated.
Date of Conference: 09-14 October 2016
Date Added to IEEE Xplore: 01 December 2016
ISBN Information:
Electronic ISSN: 2153-0866