Two Enhanced Reliability-Based Decoding Algorithms for Nonbinary LDPC Codes | IEEE Journals & Magazine | IEEE Xplore

Two Enhanced Reliability-Based Decoding Algorithms for Nonbinary LDPC Codes


Abstract:

The weighted bit-reliability-based (wBRB) algorithm for nonbinary LDPC codes suffers certain loss of symbol-reliability. Thus, this paper enhances its soft-decision versi...Show More

Abstract:

The weighted bit-reliability-based (wBRB) algorithm for nonbinary LDPC codes suffers certain loss of symbol-reliability. Thus, this paper enhances its soft-decision version by passing multiple symbol-reliability instead of bit-reliability. Furthermore, it demonstrates that plurality robustly indicates symbol-reliability of extrinsic information-sums. Thus, this paper enhances the hard-decision version by introducing symbol-reliability from plurality. Analysis results show that these two enhanced decoding algorithms significantly outperform the wBRB algorithm with reasonable overhead.
Published in: IEEE Transactions on Communications ( Volume: 64, Issue: 2, February 2016)
Page(s): 479 - 489
Date of Publication: 25 December 2015

ISSN Information:

Funding Agency:

References is not available for this document.

I. Introduction

Non-binary low-density parity-check (LDPC) codes over , as known as -ary LDPC codes, have been demonstrated to outperform their binary counterparts, especially for short and moderate code lengths [1]–[7]. However, the non-binary belief propagation (BP) decoding algorithms [1], [8], [9] require a large amount of computation and storage. The extended Min-Sum (EMS) [10]–[12], Min-Max [13]–[15] and trellis based EMS (T-EMS) [16]–[18] algorithms have been presented to reduce the complexity of the BP algorithms. However, their performance degrades as the complexity decreases. The iterative reliability-based majority-logic decoding algorithms [19]–[24], firstly proposed by Lin et al., enjoy low-complexity, but suffer error-floors for non-binary LDPC codes with low column weights. The multiple-votes symbol-flipping (MV-SF) decoding algorithm [25] propagates the most reliable values to the check node (CN), with the only information of their ranking. Thus, many researchers dedicated themselves to seek better trade-offs between performance and complexity.

Select All
1.
M. C. Davey and D. J. C. MacKay, “Low density parity check codes over \${\text{GF}}(q)\$, ” IEEE Commun. Lett., vol.  2, no.  6, pp.  165–167, Jun. 1998.
2.
C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular \$(2, d_c)\$ -LDPC codes over \${\text{GF}}(q)\$ using their binary images, ” IEEE Trans. Commun., vol.  56, no.  10, pp.  1626–1635, Oct. 2008.
3.
G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo codes over high order fields, ” IEEE Trans. Commun., vol.  61, no.  6, pp.  2201–2211, Jun. 2013.
4.
B. Zhou, J. Kang, S. Song, S. Lin, K. A. S. Abdel-Ghaffar, and M. Xu, “Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions, ” IEEE Trans. Commun., vol.  57, no.  6, pp.  1652–1662, Jun. 2009.
5.
D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for short block length and high rate applications, ” in Proc. IMA Workshop Codes Syst. Graph. Models, Jun. 2000, pp.  113–130.
6.
B. Zhou, J. Kang, Y.-Y. Tai, Q. Huang, and S. Lin, “High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries, ” in Proc. IEEE Mil. Commun. Conf., Oct. 2007, pp.  1–8.
7.
J. Li, K. Liu, S. Lin, and K. A. S. Abdel-Ghaffar, “A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes, ” IEEE Trans. Commun., vol.  63, no.  4, pp.  1057–1068, Feb. 2015.
8.
L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over \${\text{GF}}(2^q)\$, ” in Proc. IEEE Inf. Theory Workshop, Apr. 2003, pp.  70–73.
9.
H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over \${\text{GF}}(q)\$, ” in Proc. IEEE Int. Conf. Commun., Jun. 2004, vol.  2, pp.  772–776.
10.
D. Declercq and M. Fossorier, “Decoding algorithms for non-binary LDPC codes over \${\text{GF}}(q)\$, ” IEEE Trans. Commun., vol.  55, no.  4, pp.  633–643, Apr. 2007.
11.
A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity decoding for non-binary LDPC codes in high order fields, ” IEEE Trans. Commun., vol.  58, no.  5, pp.  1365–1375, May 2010.
12.
C.-L. Wang, X. Chen, Z. Li, and S. Yang, “A simplified min-sum decoding algorithm for non-binary LDPC codes, ” IEEE Trans. Commun., vol.  61, no.  1, pp.  24–32, Jan. 2013.
13.
V. Savin, “Min-max decoding for non-binary LDPC codes, ” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2008, pp.  960–964.
14.
F. Cai and X. Zhang, “Relaxed min-max decoder architectures for non-binary low-density parity-check codes, ” IEEE Trans. VLSI Syst., vol.  21, no.  11, pp.  2010–2023, Nov. 2013.
15.
J. Lin and Z. Yan, “An efficient fully parallel decoder architecture for non-binary LDPC codes, ” IEEE Trans. VLSI Syst., vol.  22, no.  12, pp.  2649–2660, Dec. 2014.
16.
E. Li, K. Gunnam, and D. Declercq, “Trellis based extended min-sum for decoding non-binary LDPC codes, ” in Proc. IEEE Int. Symp. Wireless Commun. Syst., Nov. 2011, pp.  46–50.
17.
J. O. Lacruz, F. Garcia-Herrero, J. Valls, and D. Declercq, “One minimum only trellis decoder for non-binary low-density parity-check codes,” IEEE Trans. Circuits Syst., vol.  62, no.  1, pp.  177–184, Jan. 2015.
18.
E. Li, D. Declercq, and K. Gunnam, “Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware structure, ” IEEE Trans. Commun., vol.  61, no.  7, pp.  2600–2611, Jul. 2013.
19.
Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries: A rediscovery and new results,” IEEE Trans. Inf. Theory, vol.  47, no.  7, pp.  2711–2736, Nov. 2001.
20.
D. Zhao, X. Ma, C. Chen, and B. Bai, “A low complexity decoding algorithm for majority-logic decodable non-binary LDPC codes, ” IEEE Commun. Lett., vol.  14, no.  11, pp.  1062–1064, Nov. 2010.
21.
C.-Y. Chen, Q. Huang, C.-C. Chao, and S. Lin, “Two low-complexity reliability-based message-passing algorithms for decoding non-binary LDPC codes, ” IEEE Trans. Commun., vol.  58, no.  11, pp.  3140–3147, Dec. 2010.
22.
C. Xiong and Z. Yan, “Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes,” in Proc. Conf. Rec. 45th Asilomar Conf. Signals Syst. Comput., Nov. 2011, pp.  894–898.
23.
X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-passing decoder architectures for non-binary LDPC codes, ” IEEE Trans. VLSI Syst., vol.  20, no.  11, pp.  1938–1950, Nov. 2012.
24.
C. Xiong and Z. Yan, “Improved iterative hard-and soft-reliability based majority-logic decoding algorithms for non-binary low-density parity-check codes,” IEEE Trans. Signal Process., vol.  62, no.  20, pp.  5449–5457, Oct. 2014.
25.
F. Garcia-Herrero, D. Declercq, and J. Valls, “Non-binary LDPC decoder based on symbol flipping with multiple votes, ” IEEE Commun. Lett., vol.  18, no.  5, pp.  749–752, May 2014.
26.
Q. Huang, M. Zhang, Z. Wang, and L. Wang, “Bit-reliability based low-complexity decoding algorithms for non-binary LDPC codes, ” IEEE Trans. Commun., vol.  62, no.  12, pp.  4230–4240, Dec. 2014.
27.
R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol.  IT-8, no.  1, pp.  21–28, Jan. 1962.
28.
K. Jagiello and W. E. Ryan, “Iterative plurality-logic and generalized algorithm B decoding of q-ary LDPC codes, ” in Proc. IEEE Inf. Theory App. Workshop, Feb. 2011, pp.  1–7.
29.
R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured LDPC codes, ” in Proc. Int. Symp. Commun. Theory Appl., Jul. 2001, pp.  365–370.
30.
X. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs, ” IEEE Trans. Inf. Theory, vol.  51, no.  1, pp.  386–398, Oct. 2005.

Contact IEEE to Subscribe

References

References is not available for this document.