Loading [MathJax]/extensions/MathMenu.js
Massive But Few Active MIMO | IEEE Journals & Magazine | IEEE Xplore

Abstract:

In this paper, an emerging wireless communication concept, which is termed as spatial modulation (SM) for large-scale multiple-input-multiple-output (MIMO), is considered...Show More

Abstract:

In this paper, an emerging wireless communication concept, which is termed as spatial modulation (SM) for large-scale multiple-input-multiple-output (MIMO), is considered. The results show that from the information-theoretic perspective, SM achieves capacity comparable to the open-loop MIMO capacity, although a subset of transmit antennas is activated in every channel use because both the channel coefficients and the input symbols carry information in SM. As a result, SM compensates the loss of information capacity due to a subset of antennas being activated by modulating information in the antenna index; therefore, the total information rate remains high. In particular, an upper bound for the capacity of SM is derived in closed form, and it is shown analytically that this upper bound is almost certainly achievable in the massive MIMO regime. Moreover, it is shown that the upper bound is achievable with no channel state information at the transmitter (CSIT) but with channel distribution information (CDI) at the transmitter (CDIT). The optimum transmission strategy should adapt the channel input distribution to fading using CDI such as the K factor in Rician fading or the shape parameter m in Nakagami-m fading.
Published in: IEEE Transactions on Vehicular Technology ( Volume: 65, Issue: 9, September 2016)
Page(s): 6861 - 6877
Date of Publication: 14 October 2015

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.