Abstract:
We introduce the problem of minimal actuator placement in a linear control system so that a bound on the minimum control effort for a given state transfer is satisfied wh...Show MoreMetadata
Abstract:
We introduce the problem of minimal actuator placement in a linear control system so that a bound on the minimum control effort for a given state transfer is satisfied while controllability is ensured. We first show that this is an NP-hard problem following the recent work of Olshevsky [1]. Next, we prove that this problem has a supermodular structure. Afterwards, we provide an efficient algorithm that approximates up to a multiplicative factor of O(log n), where n is the size of the multi-agent network, any optimal actuator set that meets the specified energy criterion. Moreover, we show that this is the best approximation factor one can achieve in polynomial-time for the worst case. Finally, we test this algorithm over large Erdös-Rényi random networks to further demonstrate its efficiency.
Published in: 2015 American Control Conference (ACC)
Date of Conference: 01-03 July 2015
Date Added to IEEE Xplore: 30 July 2015
ISBN Information: