Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Monday, 30 June, IEEE Xplore will undergo scheduled maintenance from 1:00-2:00 PM ET (1800-1900 UTC).
On Tuesday, 1 July, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC).
During these times, there may be intermittent impact on performance. We apologize for any inconvenience.

Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates


Abstract:

In this study, we provided an approach of pre-strained growth to significantly enhance the FMR frequency of magnetic films. A series of 100 nm magnetostrictive FeGa films...Show More

Abstract:

In this study, we provided an approach of pre-strained growth to significantly enhance the FMR frequency of magnetic films. A series of 100 nm magnetostrictive FeGa films were grown on flexible polyethylene terephthalate (PET) substrates which were bowed onto the convex molds with different curvature radii. When the FeGa films were flatten to a plane, they were suffered a compressive strain arisen from the shaped substrates. As shown in Figs . 1(a) and 1(b), the FeGa films exhibit a remarkable uniaxial anisotropy perpendicular to the compressive strain. The strength of magnetic anisotropy is enhanced with increasing the compressive strain from 0 to 0 .78%. The permeability spectra measured in the frequency range from 0 .5 to 8 GHz are shown in Figs . 1(c) and 1(d). With the increase of the compressive-strain induced magnetic anisotropy, the initial permeability μi of the FeGa films inconspicuously decreases, while the FMR frequency shifts toward the higher values. In order to quantitatively understanding the effect of strain on the dynamic properties of the FeGa thin films, the experimentally obtained permeability spectra can be fitted by using the Landau-Lifshitz-Gilbert (LLG) theory.
Date of Conference: 11-15 May 2015
Date Added to IEEE Xplore: 16 July 2015
ISBN Information:

ISSN Information:

Conference Location: Beijing, China

Contact IEEE to Subscribe

References

References is not available for this document.