Computationally efficient multi-objective optimization of and experimental validation of Yagi-Uda antenna | IEEE Conference Publication | IEEE Xplore

Computationally efficient multi-objective optimization of and experimental validation of Yagi-Uda antenna


Abstract:

In this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda ...Show More

Abstract:

In this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface approximation (RSA) models constructed from sampled coarse-discretization EM simulation data. The RSA model is utilized to determine the Pareto optimal set of the best possible trade-offs between conflicting objectives. In order to alleviate the difficulties related to a large number of designable parameters, the RSA model is constructed in the initially reduced design space, where the lower/upper parameter bounds are estimated by solving appropriate single-objective problems resulting in identifying the extreme point of the Pareto set. The main optimization engine is multi-objective evolutionary algorithm (MOEA). Selected designs are subsequently refined using space mapping technique to obtain the final representation of the Pareto front at the high-fidelity EM antenna model level. The total design cost corresponds to less than two hundred of EM antenna simulations.
Date of Conference: 28-30 August 2014
Date Added to IEEE Xplore: 27 April 2015
Electronic ISBN:978-989-758-060-4
Conference Location: Vienna, Austria

Contact IEEE to Subscribe

References

References is not available for this document.