Abstract:
Implant-to-air ultra-wideband communication systems are interesting for neural recording systems due to their low power consumption and high data-rates. In this paper we ...Show MoreMetadata
Abstract:
Implant-to-air ultra-wideband communication systems are interesting for neural recording systems due to their low power consumption and high data-rates. In this paper we investigate the performance of an implant-to-air wireless link using a realistic model of the biological channel for neural recording systems. We propose an optimized fifth-derivative Gaussian pulse as a transmitted waveform for different modulations: binary phase shift keying (BPSK), on-off keying (OOK) and differential phase shift keying (DPSK). Monitoring of neural responses with high resolution in the brain requires a high data rate link as the number of electrodes is increased. Each electrode needs a data rate around 800 kb/s to support its neural channel. As we target more than 512 electrodes, we require a data link higher than 400 Mbps.
Published in: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Date of Conference: 26-30 August 2014
Date Added to IEEE Xplore: 06 November 2014
Electronic ISBN:978-1-4244-7929-0
ISSN Information:
PubMed ID: 25570859