Loading [MathJax]/extensions/MathZoom.js
Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot | IEEE Conference Publication | IEEE Xplore

Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot


Abstract:

By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Addi...Show More

Abstract:

By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.
Date of Conference: 26-30 August 2014
Date Added to IEEE Xplore: 06 November 2014
Electronic ISBN:978-1-4244-7929-0

ISSN Information:

PubMed ID: 25570281
Conference Location: Chicago, IL, USA

Contact IEEE to Subscribe

References

References is not available for this document.