Abstract:
Decentralized monitoring and alarming systems can be an attractive alternative to centralized architectures. Distributed sensor nodes (e.g., in the smart grid's distribut...Show MoreMetadata
Abstract:
Decentralized monitoring and alarming systems can be an attractive alternative to centralized architectures. Distributed sensor nodes (e.g., in the smart grid's distribution network) are closer to an observed event than a global and remote observer or controller. This improves the visibility and response time of the system. Moreover, in a distributed system, local problems may also be handled locally and without overloading the communication network. This paper studies alarming from a distributed computing perspective and for two fundamentally different scenarios: on-duty and off-duty. We model the alarming system as a sensor network consisting of a set of distributed nodes performing local measurements to sense events. In order to avoid false alarms, the sensor nodes cooperate and only escalate an event (i.e., raise an alarm) if the number of sensor nodes sensing an event exceeds a certain threshold. In the on-duty scenario, nodes not affected by the event can actively help in the communication process, while in the off-duty scenario, non-event nodes are inactive. We present and analyze algorithms that minimize the reaction time of the monitoring system while avoiding unnecessary message transmissions. We investigate time and message complexity tradeoffs in different settings, and also shed light on the optimality of our algorithms by deriving cost lower bounds for distributed alarming systems.
Published in: IEEE/ACM Transactions on Networking ( Volume: 24, Issue: 1, February 2016)
References is not available for this document.
Select All
1.
A. Davison, "Laptops as earthquakesensors", MIT Technol. Rev., 2008, [online] Available: http://www.technologyreview.com/ computing /20658/.
2.
S. M. Amin and B. Wollenberg, "Toward a smart grid: Power delivery for the 21stcentury", IEEE Power Energy Mag., vol. 3, no. 5, pp. 34-41, Sep.–Oct. 2005.
3.
H.-A. Kim and B. Karp, "Autograph: Toward automated distributed worm signaturedetection", Proc. 13th USENIX Security Symp., pp. 271-286, 2004.
4.
D. Peleg, Distributed Computing: A Locality-Sensitive Approach, USA, PA, Philadelphia:SIAM, 2000.
5.
B. Awerbuch, B. Berger, L. Cowen and D. Peleg, "Fast network decomposition", Proc. 11th ACM PODC, pp. 169-177, 1992.
6.
H. N. Gabow and H. H. Westermann, "Forests frames and games: Algorithmsfor matroid sums and applications", Algorithmica, vol. 7, no. 1, pp. 465-497, 1992.
7.
C. S. J. Nash-Williams, "Edge-disjoint spanning trees of finite graphs", J. London Math. Soc., vol. 36, pp. 445-450, 1961.
8.
F. Kuhn, T. Moscibroda and R. Wattenhofer, "What cannot be computedlocally!", Proc. 23rd ACM PODC, pp. 300-309, 2004.
9.
J. Suomela, "Survey of local algorithms", ACM Comput. Surv., vol. 45, no. 2, pp. 24:1-24:40, 2013.
10.
Y. Birk, I. Keidar, L. Liss, A. Schuster and R. Wolff, "Veracity radius: Capturingthe locality of distributed computations", Proc. 25th ACM PODC, pp. 102-111, 2006.
11.
M. Elkin, "A faster distributedprotocol for constructing a minimum spanning tree", Proc. 15th ACM-SIAM SODA, pp. 359-368, 2004.
12.
M. Göös and J. Suomela, "Locally checkable proofs", Proc. 30th Annu. ACM PODC, pp. 159-168, 2011.
13.
A. Korman and S. Kutten, "Distributed verificationof minimum spanning trees", Proc. 25th Annu.ACM PODC, pp. 26-34, 2006.
14.
A. Korman, S. Kutten and D. Peleg, "Proof labeling schemes", J. Distrib. Comput., vol. 22, no. 4, pp. 215-233, 2010.
15.
D. E. Knuth, The Art of Computer Programming, USA, CA, Redwood City:Addison-Wesley Longman, vol. 3, 1998.
16.
S. Schmid and J. Suomela, "Exploiting localityin distributed SDN control", Proc. ACM SIGCOMM HotSDN, pp. 1-6, 2013.
17.
A. A. Abbasi and M. Younis, "A survey on clustering algorithms for wireless sensornetworks", Comput. Commun., vol. 30, pp. 2826-2841, 2007.
18.
R. G. Gallager, P. A. Humblet and P. M. Spira, "A distributed algorithm for minimum-weightspanning trees", Trans. Program. Lang. Syst., vol. 5, no. 1, pp. 66-77, 1983.
19.
F. Kuhn, T. Locher and R. Wattenhofer, "Tight bounds for distributedselection", Proc. 19th ACM SPAA, pp. 145-153, 2007.
20.
M. Luby, "A simple parallel algorithmfor the maximal independent set problem", Proc. 17th Annu. ACM STOC, pp. 1-10, 1985.
21.
B. Awerbuch and D. Peleg, "Sparse partitions (extendedabstract)", Proc. 31st Annu. FOCS, pp. 503-513, 1990.
22.
M. Grohe, S. Kreutzer and S. Siebertz, "Deciding first-orderproperties of nowhere dense graphs", Proc. 46th Annu. STOC, pp. 89-98, 2014.
23.
C. Lenzen and R. Wattenhofer, "Minimum dominatingset approximation in graphs of bounded arboricity", Proc. 24th DISC, pp. 510-524, 2010.
24.
A. Czygrinow, M. Hanćkowiak and E. Szymańska, "Fast distributed approximationalgorithm for the maximum matching problem in bounded arboricity graphs", Proc. 20th ISAAC, pp. 668-678, 2009.
25.
K. Kothapalli and S. Pemmaraju, "Distributed graph coloringin a few rounds", Proc. 30th Annu. ACM PODC, pp. 31-40, 2011.
26.
N. Alon and J. Spencer, The Probabilistic Method, USA, NY, New York:Wiley, 1991.
27.
T. H. Cormen, C. Stein, R. L. Rivest and C. E. Leiserson, Introduction to Algorithms, USA, NY, New York:McGraw-Hill, 2001.
28.
A. Richa, C. Scheideler, S. Schmid and J. Zhang, "An efficient and fair mac protocol robust to reactiveinterference", IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 760-771, Jun. 2013.