Abstract:
Recent advances in self-interference cancelation techniques enable full-duplex relaying (FDR) systems, which transmit and receive simultaneously in the same frequency ban...Show MoreMetadata
Abstract:
Recent advances in self-interference cancelation techniques enable full-duplex relaying (FDR) systems, which transmit and receive simultaneously in the same frequency band with high spectrum efficiency. Unlike most existing works, we study the problem of energy-efficient resource allocation in FDR networks. We consider a shared FDR deployment scenario, where an FDR relay is deployed at the intersection of several adjacent cell sectors. First, a simple but practical transmission strategy is proposed to deal with the involved interference, i.e., multiaccess interference, multiuser interference, and self-interference. Then, the problem of joint power and subcarrier allocation is formulated to maximize the network-level energy efficiency while taking the residual self-interference into account. Since the formulated problem is a mixed combinatorial and nonconvex optimization problem with high computation complexity, we use Dinkelbach and discrete stochastic optimization methods to solve the energy-efficient resource-allocation problem efficiently. Simulation results are presented to show the effectiveness of the proposed scheme.
Published in: IEEE Transactions on Vehicular Technology ( Volume: 64, Issue: 8, August 2015)
Funding Agency:
Related Articles are not available for this document.