Abstract:
The recent literature on face recognition technology discusses the issue of face spoofing which can bypass the authentication system by placing a photo/video/mask of the ...Show MoreMetadata
Abstract:
The recent literature on face recognition technology discusses the issue of face spoofing which can bypass the authentication system by placing a photo/video/mask of the enrolled person in front of the camera. This problem could be minimized by detecting the liveness of the person. Therefore, in this paper, we propose a robust liveness detection scheme based on challenge and response method. The liveness module is added as extra layer of security before the face recognition module. The liveness module utilizes face macro features, especially eye and mouth movements in order to generate random challenges and observing the user's response on account of this. The reliability of liveness module is tested by placing different types of spoofing attacks with various means, like using photograph, videos, etc. In all, five types of attacks have been taken care of and prevented by our system. Experimental results show that system is able to detect the liveness when subjected to all these attacks except the eye & mouth imposter attack. This attack is able to bypass the liveness test but it creates massive changes in face structure. Therefore resultant unrecognized or misclassified by the face recognition module. An experimental test conducted on 65 persons on university of Essex face database confirms that removal of eye and nose components results 75% misclassification.
Published in: 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT 2014)
Date of Conference: 12-13 July 2014
Date Added to IEEE Xplore: 28 August 2014
ISBN Information: