End-to-end learning for music audio | IEEE Conference Publication | IEEE Xplore

End-to-end learning for music audio


Abstract:

Content-based music information retrieval tasks have traditionally been solved using engineered features and shallow processing architectures. In recent years, there has ...Show More

Abstract:

Content-based music information retrieval tasks have traditionally been solved using engineered features and shallow processing architectures. In recent years, there has been increasing interest in using feature learning and deep architectures instead, thus reducing the required engineering effort and the need for prior knowledge. However, this new approach typically still relies on mid-level representations of music audio, e.g. spectrograms, instead of raw audio signals. In this paper, we investigate whether it is possible to apply feature learning directly to raw audio signals. We train convolutional neural networks using both approaches and compare their performance on an automatic tagging task. Although they do not outperform a spectrogram-based approach, the networks are able to autonomously discover frequency decompositions from raw audio, as well as phase-and translation-invariant feature representations.
Date of Conference: 04-09 May 2014
Date Added to IEEE Xplore: 14 July 2014
Electronic ISBN:978-1-4799-2893-4

ISSN Information:

Conference Location: Florence, Italy

Contact IEEE to Subscribe

References

References is not available for this document.