Abstract:
In this paper, we study the resource allocation in a device-to-device (D2D) communication underlaying green cellular network, where the base station (BS) is powered by su...Show MoreMetadata
Abstract:
In this paper, we study the resource allocation in a device-to-device (D2D) communication underlaying green cellular network, where the base station (BS) is powered by sustainable energy. Our objective is to enhance the network sustainability and efficiency by introducing power control and cooperative communication. Specifically, we propose optimal power adaptation schemes to maximize the network efficiency under two practical power constraints. We then take the dynamics of the charging and discharging processes of the energy buffer into consideration to ensure the network sustainability. To this end, the energy buffer is modeled as a G/D/1 queue where the input energy has a general distribution. Power allocation schemes are proposed based on the statistics of the energy buffer to enhance the network efficiency and sustainability. Both theoretical analysis and numerical results demonstrate that our proposed power allocation schemes can improve the network throughput drastically while maintaining the network sustainability at a certain level.
Published in: IEEE Transactions on Wireless Communications ( Volume: 13, Issue: 2, February 2014)