Loading [a11y]/accessibility-menu.js
Reconstruction guarantee analysis of binary measurement matrices based on girth | IEEE Conference Publication | IEEE Xplore

Reconstruction guarantee analysis of binary measurement matrices based on girth


Abstract:

Binary 0-1 measurement matrices, especially those from coding theory, were introduced to compressed sensing (CS) recently. Good measurement matrices with preferred proper...Show More

Abstract:

Binary 0-1 measurement matrices, especially those from coding theory, were introduced to compressed sensing (CS) recently. Good measurement matrices with preferred properties, e.g., the restricted isometry property (RIP) and nullspace property (NSP), have no known general ways to be efficiently checked. Khajehnejad et al. made use of girth to certify the good performances of sparse binary measurement matrices. In this paper, we examine the performance of binary measurement matrices with uniform column weight and arbitrary girth under basis pursuit. Explicit sufficient conditions of exact reconstruction are obtained, which improve the previous results derived from RIP for any girth g and results from NSP when g/2 is odd. Moreover, we derive explicit l1/l1, l2/l1 and l/l1 sparse approximation guarantees. These results further show that large girth has positive impacts on the performance of binary measurement matrices under basis pursuit, and the binary parity-check matrices of good LDPC codes are important candidates of measurement matrices.
Date of Conference: 07-12 July 2013
Date Added to IEEE Xplore: 07 October 2013
Electronic ISBN:978-1-4799-0446-4

ISSN Information:

Conference Location: Istanbul, Turkey

Contact IEEE to Subscribe

References

References is not available for this document.