Abstract:
Binary 0-1 measurement matrices, especially those from coding theory, were introduced to compressed sensing (CS) recently. Good measurement matrices with preferred proper...Show MoreMetadata
Abstract:
Binary 0-1 measurement matrices, especially those from coding theory, were introduced to compressed sensing (CS) recently. Good measurement matrices with preferred properties, e.g., the restricted isometry property (RIP) and nullspace property (NSP), have no known general ways to be efficiently checked. Khajehnejad et al. made use of girth to certify the good performances of sparse binary measurement matrices. In this paper, we examine the performance of binary measurement matrices with uniform column weight and arbitrary girth under basis pursuit. Explicit sufficient conditions of exact reconstruction are obtained, which improve the previous results derived from RIP for any girth g and results from NSP when g/2 is odd. Moreover, we derive explicit l1/l1, l2/l1 and l∞/l1 sparse approximation guarantees. These results further show that large girth has positive impacts on the performance of binary measurement matrices under basis pursuit, and the binary parity-check matrices of good LDPC codes are important candidates of measurement matrices.
Published in: 2013 IEEE International Symposium on Information Theory
Date of Conference: 07-12 July 2013
Date Added to IEEE Xplore: 07 October 2013
Electronic ISBN:978-1-4799-0446-4