Abstract:
Drug delivery through micromachined needles is an attractive alternative to intramuscular and subdermal injection by hypodermic needles, due to the potential for reduced ...Show MoreMetadata
Abstract:
Drug delivery through micromachined needles is an attractive alternative to intramuscular and subdermal injection by hypodermic needles, due to the potential for reduced pain caused by the micro-sized needles. In this paper, a polymer-based fabrication process using UV lithography into micromolds is developed, allowing the fabrication of microneedle (MN) shafts, tips, lumens, and substrate baseplate using lithography. Using UV lithography into micromolds allows complex three-dimensional structures to be defined, since both mask patterns and mold topography are available to define the structures. A hollow MN array and baseplate, in which the needle lumens extend through the thickness of the baseplate, are demonstrated. Fabricated SU-8 MNs are 825 μm in height and 400 μm in width, with a pyramidal tip; the needle lumen, 120 μm in diameter, intersects with one of the faces of the pyramidal tip. Mechanical characterization of the fabricated MNs shows that the fracture force of a single needle against a rigid surface is 12.0 N. The insertion force of a single needle into porcine skin is empirically determined to be 2.4 N. The fracture force of the needle against porcine skin is observed to be in excess of 90 N.
Published in: Journal of Microelectromechanical Systems ( Volume: 22, Issue: 5, October 2013)
References is not available for this document.
Select All
1.
M. R. Prausnitz, "Microneedles for transdermal drugdelivery", Adv. Drug Del. Rev., vol. 56, no. 5, pp. 581-587, Mar. 2004.
2.
Q. Zhu, V. G. Zarnitsyn, L. Ye, Z. Wen, Y. Gao, L. Pan, et al., "Immunization by vaccine-coated microneedle arrays protects against lethalinfluenza virus challenge", Proc. Nat. Acad. Sci. U.S.A., vol. 106, no. 19, pp. 7968-7973, May 2009.
3.
H. S. Gill, J. Soderholm, M. R. Prausnitz and M. Sallberg, "Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine", Gene Therapy, vol. 17, no. 6, pp. 811-814, Jun. 2010.
4.
P. Van Damme, F. Oosterhuis-Kafeja, M. Van der Wielen, Y. Almagor, O. Sharon and Y. Levin, "Safety andefficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthyadults", Vaccine, vol. 27, no. 3, pp. 454-459, Jan. 2009.
5.
A. Arora, M. R. Prausnitz and S. Mitragotri, "Micro-scale devices for transdermal drug delivery", Int. J. Pharmaceutics, vol. 364, no. 2, pp. 227-236, Dec. 2008.
6.
M. R. Prausnitz, S. Mitragotri and R. Langer, "Current status and future potential of transdermal drug delivery", Nat. Rev. Drug Discovery, vol. 3, no. 2, pp. 115-124, Feb. 2004.
7.
J. C. Birchall, R. Clemo, A. Anstey and D. N. John, "Microneedles in clinical practice—Anexploratory study into the opinions of healthcare professionals and the public", Pharmaceutical Res., vol. 28, no. 1, pp. 95-106, Jan. 2011.
8.
S. M. Bal, Z. Ding, E. van Riet, W. Jiskoot and J. A. Bouwstra, "Advances in transcutaneous vaccine delivery: Do all ways lead toRome?", J. Controlled Release, vol. 148, no. 3, pp. 266-282, Dec. 2010.
9.
A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy and R. J. Narayan, "Two photon polymerization of polymer-ceramic hybrid materials fortransdermal drug delivery", Int. J. Appl. Ceramic Technol., vol. 4, no. 1, pp. 22-29, 2007.
10.
Y. Choi, M. A. McClain, M. C. LaPlaca, A. B. Frazier and M. G. Allen, "Three dimensional MEMS microfluidicperfusion system for thick brain slice cultures", Biomed. Microdevices, vol. 9, no. 1, pp. 7-13, Feb. 2007.
11.
Hollow microneedle array and method, Nov. 2009.
12.
S. P. Davis, W. Martanto, M. G. Allen and M. R. Prausnitz, "Hollow metal microneedles for insulin delivery to diabetic rats", IEEE Trans. Biomed. Eng., vol. 52, pp. 909-915, May 2005.
13.
H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. de Boer, S. Y. Yeshurun, M. Hefetz, et al., "Silicon micromachined hollowmicroneedles for transdermal liquid transport", J. Microelectromech. Syst., vol. 12, pp. 855-862, Dec. 2003.
14.
B. Stoeber and D. Liepmann, "Two-dimensional arrays of out-of-planeneedles", Proc. ASME Int. Mech. Eng. Congr. Expo., pp. 355-359, 2000.
15.
B. Stoeber and D. Liepmann, "Arrays of hollow out-of-plane microneedles for drugdelivery", J. Microelectromech. Syst., vol. 14, pp. 472-479, Jun. 2005.
16.
N. Roxhed, T. C. Gasser, P. Griss, G. A. Holzapfel and G. Stemme, "Penetration enhanced ultrasharp microneedles and prediction on skininteraction for efficient transdermal drug delivery", J. Microelectromech. Syst., vol. 16, pp. 1429-1440, Dec. 2007.
17.
N. Baron, J. Passave, B. Guichardaz and G. Cabodevila, "Investigations of development process of high hollow beveled microneedles using a combination of ICPRIE and dicing saw", Microsyst. Technol., vol. 14, no. 9–11, pp. 1475-1480, 2008.
18.
F. Pérennès, B. Marmiroli, M. Matteucci, M. Tormen, L. Vaccari and E. D. Fabrizio, "Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3Dsoft lithography with polyvinyl alcohol", J. Micromech. Microeng., vol. 16, no. 3, pp. 473-479, 2006.
19.
S. Kuo and Y. Chou, "A novel polymer microneedle arrays andPDMS micromolding technique", Tamkang J. Sci. Eng., vol. 7, no. 2, pp. 95-98, 2004.
20.
R. Luttge, E. J. W. Berenschot, M. J. de Boer, D. M. Altpeter, E. X. Vrouwe, A. van den Berg, et al., "Integrated lithographic molding formicroneedle-based devices", J. Microelectromech. Syst., vol. 16, pp. 872-884, Aug. 2007.
21.
B. P. Chaudhri, F. Ceyssens, H. P. Neves, A. L. Manna, C. Van Hoof and R. Puers, "Out-of-planehigh strength polymer microneedles for transdermal drug delivery", Proc. 33rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 3680-3683, 2011.
22.
K. Lee, H. C. Lee, D. S. Lee and H. Jung, "Drawing lithography: Three-dimensionalfabrication of an ultrahigh-aspect-ratio microneedle", Adv. Mater., vol. 22, no. 4, pp. 483-486, Jan. 2010.
23.
I. Mansoor, U. O. Hafeli and B. Stoeber, "Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drugdelivery", J. Microelectromech. Syst., vol. 21, pp. 44-52, 2011.
24.
P.-C. Wang, B. A. Wester, S. Rajaraman, S.-J. Paik, S.-H. Kim and M. G. Allen, "Hollowpolymer microneedle array fabricated by photolithography process combined with micromolding technique", Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 7026-7029, 2009.
25.
S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, USA, NY, New York:Oxford Univ. Press, pp. 151-182, 2001.
26.
T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman and I. Pinnau, "Gas sorption diffusion and permeation inPDMS", J. Polym. Sci.: Part B: Polym. Phys., vol. 38, no. 3, pp. 415-434, 2000.
27.
M. S. Rogalski and S. B. Palmer, Advanced University Physics, USA, FL, Boca Raton:CRC Press, pp. 411-428, 2005.
28.
B. H. Ong, X. Yuan and S. C. Tjin, "Adjustable refractive index modulation fora waveguide with SU-8 photoresist by dual-UV exposure lithography", Appl. Optics, vol. 45, no. 31, pp. 8036-8039, 2006.
29.
S. Owega, D. Poitras and K. Faid, "Solid-state optical coupling for surfaceplasmon resonance sensors", Sens. Actuators B Chem., vol. 114, no. 1, pp. 212-217, 2006.
30.
N. J. Giordano, College Physics: Reasoning and Relationships, USA, CT, Stamford:Cengage Learning, pp. 448-448, 2010.