Loading [MathJax]/extensions/MathMenu.js
Surface-Based CT–TEE Registration of the Aortic Root | IEEE Journals & Magazine | IEEE Xplore

Abstract:

Transcatheter aortic valve implantation (TAVI) is a minimally invasive alternative to conventional aortic valve replacement for severe aortic stenosis in high-risk patien...Show More

Abstract:

Transcatheter aortic valve implantation (TAVI) is a minimally invasive alternative to conventional aortic valve replacement for severe aortic stenosis in high-risk patients in which a stent-based bioprosthetic valve is delivered into the heart via a catheter. TAVI relies largely on single-plane fluoroscopy for intraoperative navigation and guidance, which provides only gross imaging of anatomical structures. Inadequate imaging leading to suboptimal valve positioning contributes to many of the early complications experienced by TAVI patients, including valve embolism, coronary ostia obstruction, paravalvular leak, heart block, and secondary nephrotoxicity from excessive contrast use. Improved visualization can be provided using intraoperative registration of a CT-derived surface to transesophageal echo (TEE) images. In this study, the accuracy and robustness of a surface-based registration method suitable for intraoperative use are evaluated, and the performances of different TEE surface extraction methods are compared. The use of cross-plane TEE contours demonstrated the best accuracy, with registration errors of less than 5 mm. This guidance system uses minimal intraoperative interaction and workflow modification, does not require tool calibration or additional intraoperative hardware, and can be implemented at all cardiac centers at extremely low cost.
Published in: IEEE Transactions on Biomedical Engineering ( Volume: 60, Issue: 12, December 2013)
Page(s): 3382 - 3390
Date of Publication: 07 March 2013

ISSN Information:

PubMed ID: 23475331
References is not available for this document.

I. Introduction

Aortic valve disease affects 3% of the general population, making it the most common acquired heart valve disease in developed countries [1]. an aging population and a lack of effective medical therapies lead to a greater burden from this condition. in the U.S. alone, more than 50 000 surgical aortic valve replacements are performed every year [2]. an increase in the number of high-risk surgical patients with multiple comorbidities and a reluctance of patients to undergo conventional open heart surgery have been driving the development of transcatheter techniques.

Select All
1.
I. Singh, M. Shishehbor, R. Christofferson, E. Tuzcu and S. Kapadia, "Percutaneous treatment of aortic valve stenosis", Cleveland Clin. J. Med., vol. 75, no. 11, pp. 805-812, 2008.
2.
R. Bonow, B. Carabello, K. Catterjee, A. C. de Leon, Jr, D. P. Faxon, M. D. Freed, et al., "Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease", Circulation, vol. 118, pp. e523-e661, 2008.
3.
P. Genereux, S. Head, N. van Meighen, S. Kodali, A. Kirtane, K. Xu, et al., "Clinical outcomes after transcatheter aortic valve replacement using valve academic research consortium definitions: A weighted meta-analysis of 3519 patients from 16 studies", J. Amer. College Cardiol., vol. 59, pp. 2317-2326, 2012.
4.
M. John, R. Liao, Y. Zheng, A. Nottling, J. Boese, U. Kirschstein, et al., "System to guide transcatheter aortic valve implantations based on interventional C-arm CT imaging" in Medical Image Computing and Computer-Assisted Intervention, USA, NY, New York:Springer, pp. 375-382, 2010.
5.
Y. Zheng, M. John, R. Liao, J. Boese, U. Kirschstein, B. Georgescu, et al., "Automatic aorta segmentation and valve landmark detection in C-arm CT: Application to aortic valve implantation" in Medical Image Computing and Computer-Assisted Intervention, USA, NY, New York:Springer, pp. 476-483, 2010.
6.
S. Grbic, C. Gesell, R. Lonasec, M. John, J. Boese, J. Hornegger, et al., "Model-based fusion of ct and non-contrasted 3D C-arm CT: Application to transcatheter valve therapies", Proc. IEEE 9th Int. Symp. Biomed. Imag., pp. 1192-1195, 2012-May-2–5.
7.
P. Lang, P. Seslija, M. Chu, D. Bainbridge, G. Guiraudon, D. Jones, et al., "US—fluoroscopy registration for transcatheter aortic valve implantation", IEEE Trans. Biomed. Eng., vol. 59, no. 5, pp. 1444-1453, May 2012.
8.
A. Van Linden, J. Kempfert, A. Rastan, D. Holzhey, J. Blumenstein, G. Schuler, et al., "Risk of acute kidney injury after minimally invasive transapical aortic valve implantation in 270 patients", Eur. J. Cardio-Thoracic Surg., vol. 39, no. 6, pp. 835-843, 2011.
9.
J. Strauch, M. P. Scherner, P. L. Haldenwang, R. Pfister, E. Kuhn, N. Madershahian, et al., "Minimally invasive transapical aortic valve implantation and the risk of acute kidney injury", Ann. Thoracic Surg., vol. 89, pp. 465-470, 2010.
10.
P. Signorotto, A. del Vecchio, M. Montorfano, F. Maisano, M. Giagnorio, R. Bellanca, et al., "Dosimetric data and radiation risk analysis for new procedures in interventional cardiology", Radiat. Protect. Dosimetry, vol. 142, no. 2–4, pp. 201-208, 2010.
11.
L. Conradi, M. Seiffert, O. Franzen, S. Baldus, J. Schirmer, T. Meinertz, et al., "First experience with transcatheter aortic valve implantation and concomitant percutaneous coronary intervention", Clin. Res. Cardiol., vol. 100, no. 4, pp. 311-316, 2011.
12.
K. Kim and D. Miller, "Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: A review", Radiat. Protect. Dosimetry, vol. 133, no. 4, pp. 227-233, 2009.
13.
R. Bagur, J. Rodes-Cabau, D. Doyle, R. De Larochelliere, J. Villeneuve, J. Lemieux, et al., "Usefulness of TEE as the primary imaging technique to guide transcatheter transapical aortic valve implantation", J. Amer. College Cardiol.: Cardiovasc. Imag., vol. 4, no. 2, pp. 115-124, 2011.
14.
P. Lang, E. C. S. Chen, G. M. Guiraudon, D. L. Jones, D. Bainbridge, M. W. Chu, et al., "Feature-based US to CT registration of the aortic root", Proc. SPIE, vol. 7964, no. 1, pp. 79641G-1-79641G-9, 2011.
15.
C. Linte, J. Moore, C. Wedlake, D. Bainbridge, G. Guiraudon, D. Jones, et al., "Inside the beating heart: An in vivo feasibility study on fusing pre- and intra-operative imaging for minimally invasive therapy", Int. J. Comput. Assist. Radiol. Surg., vol. 4, no. 2, pp. 113-123, 2009.
16.
D. S. Cho, C. Linte, E. C. S. Chen, D. Bainbridge, C. Wedlake, J. Moore, et al., "Predicting target vessel location on robot-assisted coronary artery bypass graft using CT to ultrasound registration", Med. Phys., vol. 39, no. 3, pp. 1579-1587, 2012.
17.
Q. Duan, G. Shechter, L. Gutierrez, D. Stanton, L. Zagorchev, A. Laine, et al., "Augmenting CT cardiac roadmaps with segmented streaming ultrasound", Proc. SPIE, vol. 6509, no. 1, 2007.
18.
Y. Ma, G. Penney, C. Rinaldi, M. Cooklin, R. Razavi and K. Rhode, "Echocardiography to magnetic resonance image registration for use in image-guided cardiac catheterization procedures", Phys. Med. Biol., vol. 54, no. 16, pp. 5039-5055, 2009.
19.
20.
P. J. Besl and N. D. McKay, "A Method for Registration of 3-D Shapes", IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239-256, Feb. 1992.
21.
B. Wang, C. Toro, T. Zeffiro and M. Hallett, "Head surface digitization and registration: A method for mapping positions on the head onto magnetic resonance images", Brain Topogr., vol. 6, no. 3, pp. 185-192, 1994.
22.
D. Schwartz, D. Lemoine, E. Poiseau and C. Barillot, "Registration of meg/eeg data with 3D MRI: Methodology and precision issues", Brain Topogr., vol. 9, no. 2, pp. 101-116, 1996.
23.
G. Potts, L. Gugino, M. Leventon, W. Grimson, R. Kikinis, W. Cote, et al., "Visual hemifield mapping using transcranial magnetic stimulation coregistered with cortical surfaces derived from magnetic resonance images", J. Clin. Neurophysiol., vol. 15, no. 4, pp. 344-350, 1998.
24.
Q. Noirhomme, M. Ferrant, Y. Vandermeeren, E. Olivier, B. Macq and O. Cuisenaire, "Registration and real-time visualization of transcranial magnetic stimulation with 3-D MRI", IEEE Trans. Biomed. Eng., vol. 51, no. 11, pp. 1994-2005, Nov. 2004.
25.
D. Rueckert, "Automatic tracking of the aorta in cardiovascular mr images using deformable models", IEEE Trans. Med. Imag., vol. 16, no. 5, pp. 581-590, Oct. 1997.
26.
F. Zhao, H. Zhang, A. Wahle, T. Scholz and M. Sonka, "Automated 4-D segmentation of aortic magnetic resonance images", Proc. Brit. Mach. Vis. Conf., vol. 1, pp. 247-257, 2006.
27.
S. Saur, C. Kuhnel, T. Boskamp, G. Szkely and P. Cattin, "Automatic ascending aorta detection in CTA datasets" in Bildverarbeitung fr der Medizin, USA, NY, New York:Springer-Verlag, 2008.
28.
Y. Zheng, M. John, R. Liao, J. Boese, U. Kirschstein, B. Georgescu, et al., "Automatic aorta segmentation and valve landmark detection in c-arm ct: Application to aortic valve implantation" in Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science vol. 6361), USA, NY, New York:Springer, pp. 476-483, 2010.
29.
T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana, S. Aylward, et al., "Engineering and algorithm design for an image processing API: A technical report on ITK—The insight toolkit" in Proc. Med. Meets Virtual Reality, The Netherlands, Amsterdam:IOS Press, Incorporated, pp. 586-592, 2002.
30.
D. F. Pace, A. D. Wiles, J. Moore, C. Wedlake, D. G. Gobbi and T. M. Peters, "Validation of four-dimensional ultrasound for targeting in minimally-invasive beating-heart surgery", Proc. SPIE, vol. 7261, no. 1, pp. 726115, 2009.
Contact IEEE to Subscribe

References

References is not available for this document.