Abstract:
This paper considers a recently proposed framework for experiment design in system identification for control. We study model based control design methods, such as Model ...Show MoreMetadata
Abstract:
This paper considers a recently proposed framework for experiment design in system identification for control. We study model based control design methods, such as Model Predictive Control, where the model is obtained by means of a prediction error system identification method. The degradation in control performance due to uncertainty in the model estimate is specified by an application cost function. The objective is to find a minimum variance input signal, to be used in system identification experiment, such that the control application specification is guaranteed with a given probability when using the estimated model in the control design. We provide insight in the potentials of this approach by finite impulse response model examples, for which it is possible to analytically solve the optimal input problem. The examples show how the control specifications directly affect the excitation conditions in the system identification experiment.
Published in: 49th IEEE Conference on Decision and Control (CDC)
Date of Conference: 15-17 December 2010
Date Added to IEEE Xplore: 22 February 2011
ISBN Information: