Abstract:
In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distr...Show MoreMetadata
Abstract:
In this paper, we take a minimax approach to the problem of computing a worst-case linear mean squared error (MSE) estimate of X given Y , where X and Y are jointly distributed random vectors with parametric uncertainty in their distribution. We consider two uncertainty models, PA and PB. Model PA represents X and Y as jointly Gaussian whose covariance matrix Λ belongs to the convex hull of a set of m known covariance matrices. Model PB characterizes X and Y as jointly distributed according to a Gaussian mixture model with m known zero-mean components, but unknown component weights. We show: (a) the linear minimax estimator computed under model PA is identical to that computed under model PB when the vertices of the uncertain covariance set in PA are the same as the component covariances in model PB, and (b) the problem of computing the linear minimax estimator under either model reduces to a semidefinite program (SDP). We also consider the dynamic situation where x(t) and y(t) evolve according to a discrete-time LTI state space model driven by white noise, the statistics of which is modeled by PA and PB as before. We derive a recursive linear minimax filter for x(t) given y(t).
Published in: Proceedings of the 2010 American Control Conference
Date of Conference: 30 June 2010 - 02 July 2010
Date Added to IEEE Xplore: 29 July 2010
ISBN Information:
ISSN Information:
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Linear Approximation ,
- Parameter Uncertainty ,
- Random Vector ,
- Minimax Estimator ,
- Covariance Matrix ,
- White Noise ,
- Model Uncertainty ,
- Gaussian Mixture Model ,
- State-space Model ,
- Set Of Matrices ,
- Linear Filter ,
- Dynamic Situations ,
- Semidefinite Programming ,
- Unknown Weight ,
- Additive Noise ,
- Convex Set ,
- Family Of Distributions ,
- Static Case ,
- Parametric Family ,
- Convex Polytope
Keywords assist with retrieval of results and provide a means to discovering other relevant content. Learn more.
- IEEE Keywords
- Index Terms
- Linear Approximation ,
- Parameter Uncertainty ,
- Random Vector ,
- Minimax Estimator ,
- Covariance Matrix ,
- White Noise ,
- Model Uncertainty ,
- Gaussian Mixture Model ,
- State-space Model ,
- Set Of Matrices ,
- Linear Filter ,
- Dynamic Situations ,
- Semidefinite Programming ,
- Unknown Weight ,
- Additive Noise ,
- Convex Set ,
- Family Of Distributions ,
- Static Case ,
- Parametric Family ,
- Convex Polytope