Loading [a11y]/accessibility-menu.js
A Three-Dimensional Precorrected FFT Algorithm for Fast Method of Moments Solutions of the Mixed-Potential Integral Equation in Layered Media | IEEE Journals & Magazine | IEEE Xplore

A Three-Dimensional Precorrected FFT Algorithm for Fast Method of Moments Solutions of the Mixed-Potential Integral Equation in Layered Media


Abstract:

A three-dimensional pre-corrected fast Fourier transform (PFFT) algorithm for the rapid solution of the full-dyadic Michalski-Zheng's mixed potential integral equation is...Show More

Abstract:

A three-dimensional pre-corrected fast Fourier transform (PFFT) algorithm for the rapid solution of the full-dyadic Michalski-Zheng's mixed potential integral equation is presented. The integral equation is discretized with the Rao-Wilton-Glisson (RWG) method of moments. Handling the method of moments interactions with the dyadic kernel is simplified via representation of the RWG functions in terms of barycentric shape functions. The proposed three-dimensional precorrected FFT method distributes two-dimensional FFT grids nonuniformly along the direction of stratification according to conductor locations within the layers. For P two-dimensional FFT grids each with an average of Np associated triangular elements the method exhibits O(P 2 Np logNp) computational complexity and O(P Np) memory usage. The low-frequency breakdown of the integral equation is eliminated via loop-tree decomposition. A unique combination of O(N logN) computational complexity, fully three-dimensional boundary-element modeling in layered substrates, and full-wave modeling from dc to multi-gigahertz frequencies makes the algorithm particularly useful for characterizing large interconnect networks embedded in multilayered substrates. The method is implemented as the electromagnetic solver in Cadence's Virtuoso RF Designer software.
Published in: IEEE Transactions on Microwave Theory and Techniques ( Volume: 57, Issue: 12, December 2009)
Page(s): 3505 - 3517
Date of Publication: 17 November 2009

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.