Abstract:
This paper addresses the problem of correct recovery of multiple sparse correlated signals using distributed thresholding. We consider the scenario where multiple sensors...Show MoreMetadata
Abstract:
This paper addresses the problem of correct recovery of multiple sparse correlated signals using distributed thresholding. We consider the scenario where multiple sensors capture the same event, but observe different signals that are correlated by local transforms of their sparse components. In this context, the signals do not necessarily have the same sparse support, but instead the support of one signal is built on local transforms of the atoms in the sparse support of another signal. We establish the sufficient condition for the correct recovery of such correlated signals using independent thresholding of the multiple signals. The condition is relevant in scenarios where low complexity processing such as thresholding is needed, for example in sensor networks. The validity of the derived recovery condition is confirmed by experimental results in noiseless and noisy scenarios.
Published in: 2009 IEEE International Symposium on Information Theory
Date of Conference: 28 June 2009 - 03 July 2009
Date Added to IEEE Xplore: 18 August 2009
ISBN Information: