Extraction of shoe-print patterns from impression evidence using Conditional Random Fields | IEEE Conference Publication | IEEE Xplore

Extraction of shoe-print patterns from impression evidence using Conditional Random Fields


Abstract:

Impression evidence in the form of shoe-prints are commonly found in crime scenes. A critical step in automatic shoe-print identification is extraction of the shoe-print ...Show More

Abstract:

Impression evidence in the form of shoe-prints are commonly found in crime scenes. A critical step in automatic shoe-print identification is extraction of the shoe-print pattern. It involves isolating the shoe-print foreground (impressions made by the shoe) from the remaining elements (background and noise). The problem is formulated as one of labeling the regions of a shoeprint image as foreground/background. It is formulated as a machine learning task which is approached using a probabilistic model, i.e., conditional random fields (CRFs). Since the model exploits the inherent long range dependencies that exist in the shoe-print it is more robust than other approaches, e.g., neural networks and adaptive thresholding of grey-scale images into binary. This was demonstrated using a data set of 45 shoeprint image pairs representing latent and known shoe-print images.
Date of Conference: 08-11 December 2008
Date Added to IEEE Xplore: 23 January 2009
ISBN Information:
Print ISSN: 1051-4651
Conference Location: Tampa, FL, USA

Contact IEEE to Subscribe

References

References is not available for this document.