Abstract:
Successful therapeutic outcomes following the administration of drugs, including small molecules and large biomolecules, require not only the selection of a proper drug b...Show MoreMetadata
Abstract:
Successful therapeutic outcomes following the administration of drugs, including small molecules and large biomolecules, require not only the selection of a proper drug but also its delivery to the proper site of action, with proper temporal presentation. Drug delivery is an extremely broad area of research, as each molecule presents its own absorption, distribution, metabolism, excretion, and toxicology (ADMET) profile. Moreover, timing of drug release may affect the efficacy of a pharmacologic agent. Any means by which drug delivery can be actuated and controlled is, therefore, of interest, and there should be no surprise that microelectromechanical systems (MEMS) have received considerable attention over the past decade in the drug delivery field. The ability to generate two-dimensional (2-D) and three-dimensional (3-D) material constructs accurately and reproducibly using MEMS may lead to substantial advances over conventional drug delivery systems.
Published in: IEEE Engineering in Medicine and Biology Magazine ( Volume: 28, Issue: 1, January-February 2009)