Abstract:
We consider a networked control system, where each subsystem evolves as a Markov decision process (MDP). Each subsystem is coupled to its neighbors via communication link...Show MoreMetadata
Abstract:
We consider a networked control system, where each subsystem evolves as a Markov decision process (MDP). Each subsystem is coupled to its neighbors via communication links over which the signals are delayed, but are otherwise transmitted noise-free. A controller receives delayed state information from each subsystem. Such a networked Markov decision process with delays can be represented as a partially observed Markov decision process (POMDP). We show that this POMDP has a sufficient information state that depends only on a finite history of measurements and control actions. Thus, the POMDP can be converted into an information state MDP, whose state does not grow with time. The optimal controller for networked Markov decision processes can thus be computed using dynamic programming over a finite state space. This result generalizes the previous results on Markov decision processes with delayed state information.
Published in: 2008 47th IEEE Conference on Decision and Control
Date of Conference: 09-11 December 2008
Date Added to IEEE Xplore: 06 January 2009
ISBN Information:
Print ISSN: 0191-2216