Abstract:
We analyze the performance of wireless data telemetry links for implanted biomedical systems. An experimental realization of a bidirectional half-duplex link that uses ne...Show MoreMetadata
Abstract:
We analyze the performance of wireless data telemetry links for implanted biomedical systems. An experimental realization of a bidirectional half-duplex link that uses near-field inductive coupling between the implanted system and an external transceiver is described. Our system minimizes power consumption in the implanted system by using impedance modulation to transmit high-bandwidth information in the uplink direction, i.e., from the implanted to the external system. We measured a data rate of 2.8 Mbps at a bit error rate (BER) of <10-6 (we could not measure error rates below 10-6 ) and a data rate of 4.0 Mbps at a BER of 10-3. Experimental results also demonstrate data transfer rates up to 300 kbps in the opposite, i.e., downlink direction. We also perform a theoretical analysis of the bit error rate performance. An important effect regarding the asymmetry of rising and falling edges that is inherent to impedance modulation is predicted by theory and confirmed by experiment. The link dissipates 2.5 mW in the external system and only 100 muW in the implanted system, making it among the most power-efficient inductive data links reported. Our link is compatible with FCC regulations on radiated emissions.
Published in: IEEE Transactions on Biomedical Circuits and Systems ( Volume: 2, Issue: 4, December 2008)