Abstract:
This paper presents a system that employs random forests to formulate a method for subcellular localisation of proteins. A random forest is an ensemble learner that grows...Show MoreMetadata
Abstract:
This paper presents a system that employs random forests to formulate a method for subcellular localisation of proteins. A random forest is an ensemble learner that grows classification trees. Each tree produces a classification decision, and an integrated output is calculated. The system classifies the protein-localisation patterns within fluorescent microscope images. 2D images of HeLa cells that include all major classes of subcellular structures, and the associated feature set are used. The performance of the developed system is compared against that of the support vector machine and decision tree approaches. Three experiments are performed to study the influence of the training and test set size on the performance of the examined methods. The calculated classification errors and execution times are presented and discussed. The lowest classification error (2.9%) has been produced by the developed system.
Published in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)
Date of Conference: 01-08 June 2008
Date Added to IEEE Xplore: 26 September 2008
ISBN Information: