Abstract:
During the past several years, the Environmental Fluid Dynamics Group at Arizona State University (ASU, Tempe, AZ) conducted a comprehensive laboratory-based research pro...Show MoreMetadata
Abstract:
During the past several years, the Environmental Fluid Dynamics Group at Arizona State University (ASU, Tempe, AZ) conducted a comprehensive laboratory-based research program to elucidate the mechanisms and dynamics of mine burial in noncohesive sediments under shoaling waves on coastal slopes. This paper presents a brief description of this program as well as salient observations and quantitative parameterizations for scour, ripples, and burial that resulted from it (which constitute the ASU mine burial model). Improvements to mine burial predictive capabilities offered by the ASU model are demonstrated by evaluating it vis-a-vis the (legacy) mine burial models that are in common use [Defense Research Agency mine burial environment (DRAMBUIE), Industrie Anlagen Bau Gesellschaft (NBURY, Munchen, Germany), and wave-induced spreadsheet prediction (WISSP)]. To this end, both the legacy and ASU models are discussed briefly and compared with field experimental data obtained during the 2003 Indian Rocks Beach (IRB, FL) experiment. The scour/burial data collected during the IRB campaign, using instrumented mines and diver observations, show that the predictions of the mostly laboratory-based ASU model agree satisfactorily with field observations, both qualitatively and quantitatively.
Published in: IEEE Journal of Oceanic Engineering ( Volume: 32, Issue: 1, January 2007)