Loading [a11y]/accessibility-menu.js
Sliding Mode Neuro-Adaptive Control of Electric Drives | IEEE Journals & Magazine | IEEE Xplore

Abstract:

An innovative variable-structure-systems-based approach for online training of neural network (NN) controllers as applied to the speed control of electric drives is prese...Show More

Abstract:

An innovative variable-structure-systems-based approach for online training of neural network (NN) controllers as applied to the speed control of electric drives is presented. The proposed learning algorithm establishes an inner sliding motion in terms of the controller parameters, leading the command error towards zero. The outer sliding motion concerns the controlled electric drive, the state tracking error vector of which is simultaneously forced towards the origin of the phase space. The equivalence between the two sliding motions is demonstrated. In order to evaluate the performance of the proposed control scheme and its practical feasibility in industrial settings, experimental tests have been carried out with electric motor drives. Crucial problems such as adaptability, computational costs, and robustness are discussed. Experimental results illustrate that the proposed NN-based speed controller possesses a remarkable learning capability to control electric drives, virtually without requiring a priori knowledge of the plant dynamics and laborious startup procedures
Published in: IEEE Transactions on Industrial Electronics ( Volume: 54, Issue: 1, February 2007)
Page(s): 671 - 679
Date of Publication: 05 February 2007

ISSN Information:

No metrics found for this document.

No metrics found for this document.

References

References is not available for this document.