Loading [MathJax]/extensions/MathMenu.js
CAPAST: Content Affinity Preserved Arbitrary Style Transfer | IEEE Conference Publication | IEEE Xplore

CAPAST: Content Affinity Preserved Arbitrary Style Transfer

; ; ; ; ;
Free

Abstract:

Balancing the consistency of style and the integrity of content is the main challenge in arbitrary style transfer domain. Currently, local style details can be effectivel...Show More

Abstract:

Balancing the consistency of style and the integrity of content is the main challenge in arbitrary style transfer domain. Currently, local style details can be effectively captured by attention mechanism but easily produce distorted style patterns and inconsistent content structure. In this paper, we propose a Content Affinity Preserving Arbitrary Style Transfer (CAPAST) framework to ensure style features can be stably integrated into the content structure. Considering the local feature learning ability of CNN and the global feature representation advantage of transformer, a dual encoder is proposed to capture local and global features of images with the combination between transformer and CNN. In addition, a channel and spatially aligned attention (CSAA) is introduced to generate high-quality results by stably fusing style features and content features. In experiments, we demonstrated the superior performance of our method in preventing content structure distortion and maintaining consistency between style and content. Codes are available at https://github.com/miaopashi-zxy/CAPAST.
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information:

ISSN Information:

Conference Location: Hyderabad, India

Funding Agency:


References

References is not available for this document.