Loading [MathJax]/extensions/MathZoom.js
META-CAT: Speaker-Informed Speech Embeddings via Meta Information Concatenation for Multi-talker ASR | IEEE Conference Publication | IEEE Xplore

META-CAT: Speaker-Informed Speech Embeddings via Meta Information Concatenation for Multi-talker ASR


Abstract:

We propose a novel end-to-end multi-talker automatic speech recognition (ASR) framework that enables both multi-speaker (MS) ASR and target-speaker (TS) ASR. Our proposed...Show More

Abstract:

We propose a novel end-to-end multi-talker automatic speech recognition (ASR) framework that enables both multi-speaker (MS) ASR and target-speaker (TS) ASR. Our proposed model is trained in a fully end-to-end manner, incorporating speaker supervision from a pre-trained speaker diarization module. We introduce an intuitive yet effective method for masking ASR encoder activations using output from the speaker supervision module, a technique we term Meta-Cat (meta-information concatenation), that can be applied to both MS-ASR and TS-ASR. Our results demonstrate that the proposed architecture achieves competitive performance in both MS-ASR and TS-ASR tasks, without the need for traditional methods, such as neural mask estimation or masking at the audio or feature level. Furthermore, we demonstrate a glimpse of a unified dual-task model which can efficiently handle both MS-ASR and TS-ASR tasks. Thus, this work illustrates that a robust end-to-end multi-talker ASR framework can be implemented with a streamlined architecture, obviating the need for the complex speaker filtering mechanisms employed in previous studies.
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information:

ISSN Information:

Conference Location: Hyderabad, India

References

References is not available for this document.