Abstract:
To encourage further research and to facilitate fair comparisons in the development of deep learning-based radio propagation models, in the less explored case of directio...Show MoreMetadata
Abstract:
To encourage further research and to facilitate fair comparisons in the development of deep learning-based radio propagation models, in the less explored case of directional radio signal emissions in indoor propagation environments, we have launched the ICASSP 2025 First Indoor Pathloss Radio Map Prediction Challenge. This overview paper describes the indoor path loss prediction problem, the datasets used, the Challenge tasks, and the evaluation methodology. Finally, the results of the Challenge and a summary of the submitted methods are presented.
Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information: