Loading [MathJax]/extensions/MathMenu.js
Test-time Alignment-Enhanced Adapter for Vision-Language Models | IEEE Conference Publication | IEEE Xplore

Test-time Alignment-Enhanced Adapter for Vision-Language Models


Abstract:

Test-time adaptation with pre-trained vision-language models (VLMs) has attracted increasing attention for tackling the issue of distribution shift during the test phase....Show More

Abstract:

Test-time adaptation with pre-trained vision-language models (VLMs) has attracted increasing attention for tackling the issue of distribution shift during the test phase. While prior methods have shown effectiveness in addressing distribution shift by adjusting classification logits, they are not optimal due to keeping text features unchanged. To address this issue, we introduce a new approach called Test-time Alignment-Enhanced Adapter (TAEA), which trains an adapter with test samples to adjust text features during the test phase. We can enhance the text-to-image alignment prediction by utilizing an adapter to adapt text features. Furthermore, we also propose to adopt the negative cache from TDA as enhancement module, which further improves the performance of TAEA. Our approach outperforms the state-of-the-art TTA method of pre-trained VLMs by an average of 0.75% on the out-of-distribution benchmark and 2.5% on the cross-domain benchmark, with an acceptable training time. Code will be available at https://github.com/BaoshunWq/clip-TAEA.
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information:

ISSN Information:

Conference Location: Hyderabad, India

Contact IEEE to Subscribe

References

References is not available for this document.