Abstract:
In conventional deep speaker embedding frameworks, the pooling layer aggregates all frame-level features over time and computes their mean and standard deviation statisti...Show MoreMetadata
Abstract:
In conventional deep speaker embedding frameworks, the pooling layer aggregates all frame-level features over time and computes their mean and standard deviation statistics as inputs to subsequent segment-level layers. Such statistics pooling strategy produces fixed-length representations from variable-length speech segments. However, this method treats different frame-level features equally and discards covariance information. In this paper, we propose the Semi-orthogonal parameter pooling of Covariance matrix (SoCov) method. The SoCov pooling computes the covariance matrix from the self-attentive frame-level features and compresses it into a vector using the semi-orthogonal parametric vectorization, which is then concatenated with the weighted standard deviation vector to form inputs to the segment-level layers. Deep embedding based on SoCov is called "sc-vector". The proposed sc-vector is compared to several different baselines on the SRE21 development and evaluation sets. The sc-vector system significantly outperforms the conventional x-vector system, with a relative reduction in EER of 15.5% on SRE21Eval. When using self-attentive deep feature, SoCov helps to reduce EER on SRE21Eval by about 30.9% relatively to the conventional "mean + standard deviation" statistics.
Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information: