Abstract:
A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfull...Show MoreMetadata
Abstract:
A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.
Published in: IEEE Journal on Exploratory Solid-State Computational Devices and Circuits ( Volume: 11)