Loading [MathJax]/extensions/MathMenu.js
TagRec: Temporal-Aware Graph Contrastive Learning With Theoretical Augmentation for Sequential Recommendation | IEEE Journals & Magazine | IEEE Xplore

TagRec: Temporal-Aware Graph Contrastive Learning With Theoretical Augmentation for Sequential Recommendation


Abstract:

Sequential recommendation systems aim to predict the future behaviors of users based on their historical interactions. Despite the success of neural architectures like Tr...Show More

Abstract:

Sequential recommendation systems aim to predict the future behaviors of users based on their historical interactions. Despite the success of neural architectures like Transformer and Graph Neural Networks, these models often struggle with the inherent challenge of sparse data in accurately predicting future user behaviors. To alleviate the data sparsity problem, some methods leverage the contrastive learning to generate contrastive views, assuming the items appear discretely at the same time intervals and focusing on the sequence order. However, these approaches neglect the crucial temporal-aware collaborative patterns hidden within the user-item interactions, leading to a limited variety of contrastive pairs and less informative embeddings. The proposed framework, Temporal-aware graph contrastive learning with theoretical guarantees for sequential Recommendation (TagRec), integrates temporal-aware collaborative patterns with adaptive data augmentation to generate more informative user and item representations. TagRec employs a temporal-aware graph neural network to embed the original graph, then generates augmented graphs through the addition of interactions via latent user interest mining, the dropping of redundant interaction edges, and the perturbation of temporal information. Theoretical guarantees are provided that these augmentations enhance the graph’s utility. Extensive experiments on real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art recommendation methods.
Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 37, Issue: 5, May 2025)
Page(s): 3015 - 3029
Date of Publication: 04 February 2025

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.