Loading [a11y]/accessibility-menu.js
RecGS: Removing Water Caustic With Recurrent Gaussian Splatting | IEEE Journals & Magazine | IEEE Xplore

RecGS: Removing Water Caustic With Recurrent Gaussian Splatting


Abstract:

Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filt...Show More

Abstract:

Water caustics are commonly observed in seafloor imaging data from shallow-water areas. Traditional methods that remove caustic patterns from images often rely on 2D filtering or pre-training on an annotated dataset, hindering the performance when generalizing to real-world seafloor data with 3D structures. In this letter, we present a novel method Recurrent Gaussian Splatting (RecGS), which takes advantage of today's photorealistic 3D reconstruction technology, 3D Gaussian Splatting (3DGS), to separate caustics from seafloor imagery. With a sequence of images taken by an underwater robot, we build 3DGS recurrently and decompose the caustic with low-pass filtering in each iteration. In the experiments, we analyze and compare with different methods, including joint optimization, 2D filtering, and deep learning approaches. The results show that our proposed RecGS paradigm can effectively separate the caustic from the seafloor, improving the visual appearance, and can be potentially applied on more problems with inconsistent illumination.
Published in: IEEE Robotics and Automation Letters ( Volume: 10, Issue: 1, January 2025)
Page(s): 668 - 675
Date of Publication: 04 December 2024

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.