Abstract:
The power flow equations are fundamental to power system planning, analysis, and control. However, the inherent non-linearity and non-convexity of these equations present...Show MoreMetadata
Abstract:
The power flow equations are fundamental to power system planning, analysis, and control. However, the inherent non-linearity and non-convexity of these equations present formidable obstacles in problem-solving processes. To mitigate these challenges, recent research has proposed adaptive power flow linearizations that aim to achieve accuracy over wide operating ranges. The accuracy of these approximations inherently depends on the curvature of the power flow equations within these ranges, which necessitates considering second-order sensitivities. In this paper, we leverage second-order sensitivities to both analyze and improve power flow approximations. We evaluate the curvature across broad operational ranges and subsequently utilize this information to inform the computation of various sample-based power flow approximation techniques. Additionally, we leverage second-order sensitivities to guide the development of rational approximations that yield linear constraints in optimization problems. This approach is extended to enhance accuracy beyond the limitations of linear functions across varied operational scenarios.
Published in: IEEE Transactions on Power Systems ( Volume: 40, Issue: 3, May 2025)