Abstract:
The widespread adoption of the Internet of Things (IoT) has increased demand for task processing via mobile edge computing (MEC). In this study, we designed a directed ac...Show MoreMetadata
Abstract:
The widespread adoption of the Internet of Things (IoT) has increased demand for task processing via mobile edge computing (MEC). In this study, we designed a directed acyclic graph (DAG) task offloading workflow in MEC. Traditional task offloading often does not simultaneously take into account task upload delay and task communication delay, failing to accurately reflect real-world issues. The constraints between task execution delay, upload delay and communication delay were introduced to model system response time and energy consumption for optimization. To satisfy task dependencies, the edge rank_u sorting (ERS) algorithm is used to generate specific offloading queues. A federated deep q-network (FDQN) algorithm addresses the offloading issue. It is different from the traditional approach of uploading task information data to the edge and facing data privacy risks. FDQN deploies the model locally and only collects model parameters for aggregation to update the local model. The algorithm improves the performance and stability of the model while protecting user privacy. To automatically tune hyperparameters for multiple devices, we used the tree of parzen estimators (TPE) algorithm, and named the whole process federated DQN with automated hyperparameter optimization (FDAHO). Experimental results show that FDAHO outperforms other algorithms in scenarios of different task number, task types, and user numbers, with consideration of benchmarks.
Published in: IEEE Transactions on Services Computing ( Volume: 17, Issue: 6, Nov.-Dec. 2024)